
Queuing States
GETS32 States Support

Thu, Oct 18, 2007

States support for the GETS32 protocol includes a States Pool Table that is referenced when
fulfilling data requests that are based upon a State variable. When a State announcement is
received, the corresponding SPT entry is updated to capture that announcement. As with all data
request support, requests are fulfilled only once per 15 Hz cycle. That raises the question, what if
two State announcements, for the same State variable, are received within a single 15 Hz cycle?
Might the first announcement be missed? This note explores how this is handled by modifying
how the SPT is used by the STTE local application that processes State announcements.

Each SPT entry includes, besides the State announcement data, a byte counter that is incremented
whenever the SPT entry is updated. Each 15 Hz cycle, at the time of request fulfillment, each State-
based request checks whether the counter has changed since the last cycle. If it has, it knows that
an announcement has occurred, and it can determine whether a reply is due this cycle. That logic
only retains the low 4 bits of the counter to detect when a new update has occurred.

The scheme described here manages updates of the SPT so that any given entry is updated no
more than once per 15 Hz cycle. It does this with the help of a queue that holds waiting entries.

The number of queued entries, including the current entry, is housed in a qCnt byte. This meaning
applies before the ReplyDue calls are made during data request fulfillment by the Update task.

Any local application is given a cycle call every 15 Hz cycle shortly before request fulfillment.
This is the logical time to dequeue any waiting State announcements to matching SPT entries, in
order to prepare the SPT for the ReplyDue calls. Now, what is currently in the SPT entries was seen
by ReplyDue last cycle. After that, the entries are stale; they carry no new information for
ReplyDue to examine, because the counter byte has not changed. For each SPT entry with a qCnt
field > 1, check the queue for the oldest matching State announcement, if any, dequeue it and place
it into the SPT entry, decrementing the queue counter byte.

Now consider a refinement for the sake of efficiency. In each net call, when a State announcement
message is processed, update the matching SPT entry as appropriate, rather than always queuing
the new entry. But before doing this, dequeue any waiting State announcements. The logical time
to do this is after request fulfillment. But it may be done any time before the next net call, or in the
absence of same, by the next cycle call. To enable this logic, use an internal counter that is cleared
at the end of each cycle call and incremented at the end of each net call. Then either call can
check the counter at first, and if it is zero, perform the needed dequeuing.

The dequeuing checks the qCnt byte. If it is 0, do nothing. If it is 1, there are no more queued
entries, so decrement it to 0. If it is 2 or more, copy the oldest queued matching State record into
the SPT entry, mark the queued entry as used, and decrement qCnt in the SPT entry, leaving it as 1
or more. This process loops through all SPT entries, but if we maintain a list of all SPT entries that
have nonzero qCnt fields, it can be speeded up.

Again, to process each State announcement, check the qCnt byte. If it is 0, do nothing. If it is 1 or
more, the entry is already holding a State announcement, possibly one that was just dequeued, so
append the new one to the queue and increment qCnt.

Functional tour
The functions relevant to the above logic are these, including the argument types:

Queue(StateRecPtr)
DoState(StateRecPtr)
QPrune
QFind(DevIndex)
Dequeue
DoNet

The DoNet function processes a multicast States announcement message that includes one or more
StateRec structures. After checking for a valid message, it calls DoState for each State
announcement included in the message. It also logs any cases of received messages for which the
sequence number field does not increment by 1. This relates to multicast reception reliability.

The DoState function either updates the matching SPT entry or queues it to be handled later. It
decides this based on an argument and the qCnt field. If qCnt is 0, the entry is vacant, so it updates
the entry with this announcement and sets qCnt = 1. But if qCnt is nonzero, the entry is already
updated for this cycle, so it calls Queue and increments qCnt.

The Queue function merely adds a State record to a simple queue structure.

The Dequeue function is called once per cycle to “shift out” the oldest queued entry for each State
variable into the corresponding SPT entry. Logically, this action should be done following request
fulfillment time but before any new State announcements are received. It is done at the start of the
first net call processing, or if no messages are received, then at the time of the cycle call to STTE.
For each SPT entry that has a nonzero qCnt, it decrements qCnt and installs the oldest queued
matching State announcement, if any, to that entry, marking each removed queue entry as used. (If
qCnt = 1, there are no corresponding entries in the queue, so it merely decrements qCnt to 0.) To
do this work efficiently, since the entire SPT may have hundreds of entries, a list of SPT entry
pointers with nonzero qCnt fields is maintained. So Dequeue merely works through that list and
makes the check on each such SPT entry. As it does so, it builds an updated list.

The QFind function merely finds a match by examining each queue entry beginning with the
oldest. It is called when Dequeue finds an SPT entry with qCnt > 1. When Dequeue needs to update
an SPT entry from the queue, it calls DoState, with an argument that disables queuing. After the
dequeuing is done, it calls QPrune.

The job of QPrune is merely to advance the OUT index toward the queue’s IN index, skipping past
any used entries that have already been removed from the queue to be installed in an SPT entry.

As of this writing, there are a few limits in the implementation:
Name Value Meaning
MAXDIFFS 93 max #entries in circular buffer of unusual consecutive sequence#s
MAXREC 127 max #state records in one multicast States announcement message
MAXQUEUE 255 #entries in circular queue
MAXNZ 116 max #entries in nzList of SPT entries with nonzero qCnt fields

In operation, during testing, it seems that these limits should not be a problem. But if they are, it
should be easy to modify them and build a new version of STTE. Multicast messages are
apparently on occasion found missing when STTE is run in a test node. It seems much better in an
operational node. The #state records in a message is only occasionally more than 1 or 2. The
#entries in the queue is usually not more than 1. The max size of nzList may be only 13 or so.

Queuing States p. 2

